Magnetoresistance and Spin Transfer Torque in Arrays of Co/Cu Multilayered Nanowires

Xiaobo Huang, Liwen Tan, Bethanie Stadler Electrical & Computer Engineering, University of Minnesota

Magnetic Properties:

Motivation:

Co/Cu multilayered nanowires in Anodic Aluminum Oxide (AAO) template gained increasing attention. They have great potential for technological application, such as CPP-GMR sensor, magnetic random access memory (MRAM), and next generation recording heads.

Advantages:

- 1. Adequate magnetoresistive ratio $\Delta R/R$;
- 2. Small RC time constant;
- 3. Adequate heat dissipation;
- 4. Lower noise.

WWW.nnin.org Nanoscale Science, Engineering & Technology OF MINNESOTA

1) As the Cu thickness increased, the anisotropy switched from out of plane to in plane.

2) Magnetically isotropic nanowires had the highest MR.

3) MR=11% when Hper; MR=10% when Hpar at 300 K.

Spin Transfer Torque (STT):

The current densities required to switch the Co layers from antiparallel to parallel and back (J^{AP-P}/J^{P-AP}) were 2.7 x 10⁸/1.3 x 10⁸ and 3.2 x 10⁷/-1.6 x 10⁷ A/cm² respectively for the 10- and 60-nm diameter nanowires.

Reference: X. Huang, L. Tan, H, Cho, and B. Stadler, Journal of Applied Physics 105, 1 (2009)