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Near-threshold Voltage Computing (NTC)

® Supply voltage Vdd remains slightly above threshold voltage Vth
® Energy efficiency increases as Vdd reaches Vth
® 2-4x more energy efficient than super-threshold (STV) operation
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NTC Basics: How close to Vdd can Vth get?

Power

log(f)

Limited by the degree of parallelism in application

® Execution time is proportional to work per parallel task x f
® No degradation if 5-10x more cores engaged in computation
® 10-40x power savings per core can accommodate 5-10x more cores
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NTC Basics: How close to Vdd can Vth get?
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NTC Basics: How close to Vdd can Vth get?
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Accordion Basics

® How to close the gap between NTC and STC execution times?

Problem Size

Execution Time
f X Core Count

Problem Sizeyry X Problem Sizegry

fyry X Core Countyry fary X Core Countgry
fNTV < fSTV Core COUIltNTV > Core COUIltSTV
® Designate the problem size as the main knob to adjust

® the degree of parallelism
® the degree of vulnerability to variation
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Accordion Pros and Cons

® Accommodates a closer Vdd to Vth without compromising performance
® T'olerates exacerbated variation as Vdd reaches Vth
® Highly application-specific:

® Inputs to dictate the problem size

® Quality metrics & thresholds
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Evaluation Setup

® Simple, clustered hardware to exploit within die variation
® Fach cluster supports a different max f at chip-wide, single Vdd
® All clusters assigned to a task cycle at the f of slowest cluster
® Simulated 20mm x 20mm 288 core chip at 11nm
® 36 clusters, 8 cores per cluster
® Core: Single issue in-order
® VARIUS-NTYV to extract per cluster min Vdd and max f
® RMS applications from PARSEC and Rodinia suites

Cluster
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Conclusion

® Devises problem size as the main knob to overcome NTC barriers
® Problem size dictates
® the number of cores engaged in computation
® variation induced output quality degradation
® Decouples data & control to confine errors where they can be tolerated
® Can achieve STV execution time
® while operating 1.61-1.87x more energy-efficiently
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Evaluation Set-up

Benchmark Application domain || Quality metric Accordion input PDSLT;?;E?;OH Ag:;rlil;n tnput
canneal (PARSEC) Optimization Relative routing cost Swaps per temperature step linear linear
Number of temperature steps || linear linear
ferret (PARSEC) Similarity search Based on number of common images || Size factor complex complex
bodytrack (PARSEC) || Computer vision SSD based Number of annealing layers complex complex
x264 (PARSEC) Multimedia SSIM based Quantizer complex linear
hotspot (Rodinia) Physics simulation SSD based Number of iterations linear linear
srad (Rodinia) Image processing PSNR based Number of iterations linear linear
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Evaluation Set-up

System Parameters

Technology node: 11nm Puax= 100W
# cores: 288 Turny= 80°C
# clusters: 36 (8 cores/cluster) | Chip area =~ 20mm x 20mm

Variation Parameters

Correlation range: ¢ = 0.1 Sample size: 100 chips

Total (o /U)ven, = 15% Total (0/U)1ess = 7.5%
Technology Parameters

Vddyon= 0.55V fnou= 1.0GHz

Vthyon= 0.33V fhetwork = 0.8GHz

Architectural Parameters

Core-private mem: 64KB WT, | Cluster mem: 2MB WB,
4-way, 2ns access, 64B line 16-way, 10ns access, 64B line
Network: bus inside cluster Avg. mem round-trip access time
and 2D-torus across clusters (without contention): ~80ns
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Impact of Parametric Variation
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Problem Size vs. Quality
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Problem Size vs. Quality
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Problem Size vs. Quality of Computing
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Iso-execution time fronts
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Iso-execution time fronts
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Evaluation
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