

THEME ARTICLE: Approximate Computing

Toward Dynamic Precision
Scaling

This article makes the case for dynamic precision

scaling to improve power efficiency by tailoring

arithmetic precision adaptively to temporal changes in

algorithmic noise tolerance throughout the execution.

Approximate computing is a promising paradigm to en-
hance power efficiency by trading computation accuracy
for performance or power. The intrinsic noise tolerance of
the emerging recognition, mining, and synthesis (RMS) ap-

plications—which process massive but noisy input data by probabilistic algorithms—makes
them particularly suitable to approximate computing. In this article, we make the case for tailor-
ing the degree of approximation to changes in the application’s noise tolerance within the course
of execution. This is a generic paradigm that can be adapted to many approximation techniques,
but we will use precision scaling as a case study. Approximate computing by (non-adaptive) pre-
cision reduction represents a well-explored area.1,2 This doesn’t apply to our focus: adaptive pre-
cision reduction. Specifically, based on the observation that applications exhibit varying degrees
of sensitivity to noise during computation, we explore how tailoring the precision of computation
adaptively to temporal changes in algorithmic noise tolerance can improve power efficiency.

Due to its analogy to dynamic voltage and frequency scaling (DVFS), we refer to this paradigm
as dynamic precision scaling (DPS). Recall that DVFS can improve power efficiency by tracking
temporal changes in the performance demand of the workload and by changing the operating
voltage and frequency accordingly. Similar to DVFS, DPS tracks temporal changes in workload
characteristics. However, in improving power efficiency, DPS rather tracks temporal changes in
noise tolerance and adaptively decreases the arithmetic precision of noise-tolerant phases to ob-
tain power savings at the same operating speed (or faster execution within the same power
budget) while keeping the overall loss in accuracy due to precision reduction bounded. In this
article, we conduct a limit study to quantify the power efficiency potential of DPS, by devising a
proof-of-concept implementation.

DYNAMIC PRECISION SCALING
We envision a practical DPS implementation to comprise three basic modules: (1) an offline pro-
filer to identify and demarcate application phases of different noise tolerance characteristics, (2)
a runtime monitor to track temporal changes in workloads’ noise tolerance, and (3) an accuracy

Serif Yesil
University of Illinois at
Urbana-Champaign

Ismail Akturk
University of Missouri-
Columbia

Ulya R. Karpuzcu
University of Minnesota,
Twin Cities

30
IEEE Micro Published by the IEEE Computer Society

0272-1732/18/$33.00 ©2018 IEEEJuly/August 2018

 IEEE MICRO

controller to adjust the arithmetic precision “on the fly” accordingly. The differences in the de-
sign of these three modules give rise to different points in the DPS design space.

The offline profiler and runtime monitor should be able to capture fine-grain temporal changes in
applications’ noise tolerance. Because the noise tolerance of RMS applications is mainly algo-
rithmic, software intervention is inevitable—for example, in the form of code annotations to de-
marcate varying degrees of noise tolerance. To communicate such annotations to the hardware,
programming language extensions2 may help. At the same time, noise tolerance is input-depend-
ent, rendering profiling-based approaches such as ours necessary. The ideal solution may be hid-
den in yet-to-be-explored correlations between hardware-observable features (similar to
performance counter outcome) and noise tolerance at the application level.

The accuracy controller design space spans software, hardware, or hybrid implementations, simi-
lar to DVFS controllers. For example, if the processor features functional units of reduced preci-
sion, the controller is in charge of scheduling (more) noise-tolerant phases to lower-precision
arithmetic units. The processor may also accommodate functional units of reconfigurable preci-
sion to harvest power efficiency under DPS. In each case, a very stringent budget applies for the
power and performance overhead of the accuracy controller.

The next section details a proof-of-concept DPS implementation that features an offline profiler
along with a hypothetical runtime monitor and an accuracy controller.

Proof-of-Concept Implementation
Without loss of generality, we confine the proof-of concept DPS implementation to the floating-
point data path. However, the DPS concept generally applies to the integer data path, as well,
where the main complication comes from identification and, hence, exclusion of memory ad-
dress calculations (i.e., pointer arithmetic) from approximation.

According to the IEEE 754 standard, a single (double) precision floating-point number occupies
an 32(64)-bit register with one bit allocated for sign, 8(11) bits for exponent, and 23(52) bits for
fraction (mantissa), respectively. A single precision floating-point number corresponds to (-1)sign
x 2exponent-127 x 1.mantissa. In the proof-of concept implementation, we reduce precision by omit-
ting a subset of less significant bits of the mantissa.

The proof-of-concept implementation captures temporal changes in noise tolerance by tracking
user-defined (and annotated) regions with a large number of floating-point operations. Each
static floating-point-heavy region may have multiple dynamic instances, similar to static function
definitions and dynamic function calls. Without loss of generality, these floating-point-heavy
regions can take different forms, such as loop iterations or functions. In any case, the dynamic
instances are dispersed in time, and each may feature a different degree of noise tolerance. We
capture temporal changes in noise tolerance by tracking application behavior at region-granular-
ity, by tracking changes in the noise tolerance of such dynamic instances.

The question now becomes how to identify the noise tolerance of these regions. To this end, the
offline profiler module in the proof-of-concept implementation uses a two-step approach: The
first step involves statistical fault injection; the second step involves post-processing of the re-
sulting execution outcome. In the first step, for all floating-point operation destinations (register
or memory values) in each dynamic instance of a region, we corrupt one mantissa bit at a time
and record the corresponding accuracy loss at the application output. We repeat this experiment
for all mantissa bits, by injecting both stuck-at-0 and stuck-at-1 faults. The proof-of-concept im-
plementation uses noise-tolerant dynamic instances of regions as proxies for noise-tolerant
phases of the application. Therefore, the accuracy loss observed in the end result per fault injec-
tion experiment serves as a proxy for the degree of noise tolerance of each dynamic instance of a
region.

The post-processing at Step 2 can rely on different policies. We first devise a basic policy (DPS)
following Algorithm 1; the key inputs of this algorithm are targetAccLoss (the maximum accu-
racy loss in the end result the application can tolerate) and the outcome of the first step of offline
profiling (namely, the accuracy loss observed in the end result after injecting stuck-at-0 and

31July/August 2018 www.computer.org/micro

 APPROXIMATE COMPUTING

stuck-at-1 faults in each mantissa bit of each dynamic instance of a region). #bits specifies the
number of mantissa bits subject to fault injection, and #regions, the number of dynamic instances
of regions (which may correspond to multiple executions of the same region, different regions,
or a mixture of both).

Input: targetAccLoss, #bits, #regions
Input: AccLossS0[1...#regions][1..#bits]
Input: AccLossS1[1...#regions][1..#bits]
Output: #omittedBits[1...#regions]

1. for i1...(#regions-1) do
2. targetBit0;
3. cummAccLoss0;
4. cummAccLoss_next0;
5. while cummAccLoss<targetAccLoss & targetBit≤#bits

 & cummAccLoss_next<targetAccLoss do
6. if AccLossS0[i][targetBit], AccLossS1[i][targetBit]
 AccLossS0[i+1][targetBit], AccLossS1[i+1][targetBit]

 are valid then
7. errmax(AccLossS0[i][targetBit],AccLossS1[i][targetBit]);
8. err_next  max(AccLossS0[i+1][targetBit],

 AccLossS1[i+1][targetBit]);
9. cummAccLoss+err ;
10. cummAccLoss next+err_next;
11. else
12. break;
13. end
14. targetBit++;
15. end
16. #omittedBits[i]targetBit-1;
17. end

Algorithm 1. Basic DPS and dependency-aware DPS+ policies, with the latter highlighted.

We keep the fault injection information in two separate (#regions x #bits) matrices for stuck-at-0
(AccLossS0) and stuck-at-1 faults (AccLossS1). The algorithm output is the total number of
(consecutive) mantissa bits (starting from the least significant) we can omit while the corre-
sponding accuracy loss in the end result remains lower than targetAccLoss, on a per-region ba-
sis: #omittedBits.

Each step of the algorithm processes a different dynamic instance of a region (Line 1). Starting
from the least significant bit, we check the accuracy loss in the end result under the corruption of
each mantissa bit (targetBit): If the corresponding AccLossS0(1) entries are valid—meaning the
fault injection experiment did not result in Inf or NaN (Line 5)—we extract the maximum of ac-
curacy loss under stuck-at-0 and stuck-at-1 (Line 7). The basic DPS policy accumulates this
maximum accuracy loss in the end result due to the corruption of each mantissa bit in isolation
(in cummAccLoss from Line 9), as we consider more mantissa bits for omission. cummAccLoss
serves as a running estimate for the actual accuracy loss in the end result. Accordingly, the pol-
icy keeps evaluating higher-order mantissa bits for omission as long as cummAccLoss remains
below targetAccLoss (Line 5). We can then use the output of the basic DPS policy captured by
Algorithm 1, #omittedBits (over all regions, in other words, phases), to tune the precision of the
workload “on the fly.”

Algorithm 1’s main bottleneck is cummAccLoss, the estimate of cumulative accuracy loss in the
end result of the application if we omit multiple mantissa bits, on a per-region basis (Line 9).
This is because the actual (runtime) impact of each omitted mantissa bit on the accuracy loss in
the end result may not always be additive. Therefore, in the worst case, if we omit multiple man-
tissa bits following Algorithm 1—as captured by #omittedBits—we may eventually observe a
higher accuracy loss in the end result than targetAccLoss. A refined version of the basic DPS

32July/August 2018 www.computer.org/micro

 IEEE MICRO

policy—DPS+—can address this, as depicted in Algorithm 1, with the difference from DPS
highlighted.

Both algorithms process all dynamic region instances within the course of execution; the order of
the executed regions in AccLossS0(1) and #omittedBits arrays reflect their execution order in the
offline profiling run. For the representative set of RMS benchmarks we experiment with later in
the article, we observe that dynamic region instances, following each other in dynamic control
flow, are often also data-dependent. DPS+ leverages this insight by limiting the precision reduc-
tion of a dynamic region instance to the precision reduction of its following region instance in
execution (and processing) order. In this manner, we enforce that the (reduced) precision of a
producer’s output data matches (does not exceed) the maximum acceptable precision of the input
data of its (immediate) consumer. DPS+ still cannot provide mathematical guarantees (as data-
dependent regions are not always executed back to back), but can effectively enforce runtime
accuracy loss (in the end result) to remain below targetAccLoss.

EVALUATION SETUP
Throughout the evaluation, we refer to the proof of-concept implementation as DPS+.

Benchmarks
To quantify the power efficiency potential of DPS, we deploy a representative, relatively float-
ing-point-heavy set of RMS applications from PARSEC, Rodinia, and Gapbs suites:
Blackscholes (BS), a partial differential equation (PDE) solver for stock options (while the appli-
cation domain is arguably not suitable for approximation, we keep BS as a PDE example); Flu-
idanimate (FA), an n-body simulator; Hotspot (HS), a numerical thermal simulator; Particlefilter
(PF), a medical imaging application; and PageRank (PR), an iterative graph algorithm imple-
mentation. For each benchmark, we identify floating-point heavy regions (which represent func-
tions for the majority) in the application code, where the actual computation takes place.

All benchmarks output (possibly multi-dimensional) numeric values. To quantify the accuracy
loss in the end result, we use mean relative error (the average relative error over all data points in
the output) with respect to the full-precision outcome. The data points in BS are final stock op-
tion prices; in FA, final positions of bodies; in HS, temperature values; in PF, the final position
of the object being tracked; and in PR, the PageRank values.

Simulation Infrastructure
We implement the proof-of-concept offline profiler (compromising statistical fault injection) and
DPS policies as an extension to the Pin-based approximate computing framework iACT.4 During
offline profiling, we inject two types of faults in the mantissa: We set one mantissa bit (out of 23
for single; 52, for double precision) to 0 (stuck-at-0) or 1 (stuck-at-1) at a time. Our tool instru-
ments all floating-point arithmetic and load/store instructions for DPS+. In accordance with the
energy model presented in Shao et al.,5 we experimented with a Xeon-Phi-like system of 32-
Kbyte (512-Kbyte) L1 (L2) data cache.

Energy Model
To model energy, we use the sum of products of energy per instruction (EPI) and number of in-
structions (#instructions), over each instruction category in dynamic region instances. EPI esti-
mates come from measured data from Shao et al.,5 which categorize instructions according to the
sources of operands as register file (RF), L1, L2, and memory. Accordingly, to calculate the en-
ergy consumption of each dynamic region instance, we determine the number of instructions in
each (operand source-based) category following the classification in Shao et al.5 We deploy the
scaling model from Tong et al.6 to model how energy consumption of individual operations
changes as a function of the number of mantissa bits omitted. Tong et al.6 shows that in floating-

33July/August 2018 www.computer.org/micro

 APPROXIMATE COMPUTING

point multiplication, which represents one of the most energy-hungry floating-point operations,
processing mantissa bits can consume more than 80 percent of the total energy.

EVALUATION

Application Characteristics
Fine-grain temporal changes in the noise tolerance of RMS applications motivates DPS+. Figure
1 verifies this insight, where we plot the outcome of the fault injection experiments to measure
the sensitivity of each floating-point-heavy region to noise. The x-axis depicts which mantissa
bit we corrupt. The y-axis shows the dynamic region instances, numbered in the order of execu-
tion. Therefore, the y-axis represents the time. This figure captures the (relative) accuracy loss in
the end result, as induced by the corrupted bit, for each dynamic region instance, in gray scale:
Black indicates a totally inaccurate result with a relative accuracy loss of 1; white indicates no
accuracy loss. As expected, we observe darker regions (less noise tolerance) as we move right on
the x-axis (as we corrupt more significant mantissa bits).

We further observe that the accuracy loss indeed changes with time (across the y-axis) for all ap-
plications, least pronounced for HS in Figure 1(c). For the rest of the applications (most clearly
for FA and PF), the accuracy loss (as a proxy of noise tolerance) shows recurring patterns over
time. PR (Figure 1(e)), on the other hand, exhibits less noise tolerance as we move up on the y-
axis (in later stages of execution). This is because, relying on iterative refinement, PR has less
opportunities to recover from noise in later stages of execution.

For the benchmarks where each region corresponds to a function, differences in the noise toler-
ance between different dynamic instances of the very same (static) region stem from differences
in the function inputs across calls. For instance, BS has a single computational kernel. Each (dy-
namic) call to this kernel processes different inputs. Figure 1(a) reveals the differences in accu-
racy loss among these calls due to inputs along the time (y-) axis. Input data values also have an
impact. When working with smaller values, corruptions in less significant bits can also induce
noticeable accuracy loss in the end result. This effect is most visible in Figure 1(a). Putting it all
together, our observations so far all point to various opportunities for DPS.

Figure 1. Statistical fault injection outcome to extract temporal noise tolerance.

Static Precision Scaling
As a baseline for comparison, we next look into the accuracy loss and energy consumption if we
impose a fixed degree of precision reduction, statically, throughout the entire execution. We re-
fer to this policy as static precision scaling (SPS). As SPS does not differentiate between noise
tolerance of dynamic region instances, the least noise-tolerant instance dictates the final accuracy
loss. Under SPS, we accordingly omitted (ceiling of) 5 to 75 percent of mantissa bits. Figure 2
captures the outcome. We observe that SPS can render sizable energy savings (Figure 2(b)), par-
ticularly as we omit more than 10 percent of the bits. However, for BS and FA, the energy sav-
ings are accompanied by an excessive accuracy loss, as revealed in Figure 2(a). According to
Figure 1(b), FA can tolerate corruption in higher order bits of mantissa, but SPS cannot unlock
this opportunity. Under SPS, FA renders unacceptable accuracy loss if we omit 50 percent of the

34July/August 2018 www.computer.org/micro

 IEEE MICRO

bits (12 bits). In the next section, we show that FA can tolerate omission of up to 22 bits under
DPS+ (Figure 3(e) and 3(f)). Similarly, under SPS, BS cannot tolerate the omission of 50 percent
of its mantissa bits (12 bits), where according to Figure 1(a), many of its regions may tolerate
corruption at higher order bits (bit 18, for example). For the rest of the applications, SPS per-
forms arguably well. Still, DPS+ can unlock more opportunities for power efficiency; as a spe-
cific example, PR under SPS with 75 percent of mantissa bits (18 bits) omitted results in
acceptable accuracy loss. According to Figure 1(e), PR can temporally tolerate the omission of
even higher order bits. In the next section, we show how DPS+ can unlock this opportunity by
omitting 90 percent of the mantissa bits on average to render an accuracy loss of 0.02.

Figure 2. Impact of SPS on (a) accuracy loss and (b) energy.

Dynamic Precision Scaling
We next evaluate the effectiveness of DPS+. We invoke the two DPS algorithms with different
values of targetAccLoss, the maximum accuracy loss in the end result the application can toler-
ate and ignore the resulting #omittedBits. Recall that #omittedBits gives the total number of
(consecutive) mantissa bits (starting from the least significant) we can omit on a per-dynamic-
region-instance basis, while the corresponding accuracy loss in the end result remains lower than
targetAccLoss. Here, we report the outcome for targetAccLoss values between 0.05 and 0.2 at
increments of 0.05. Figure 3 depicts the number of omitted bits for each dynamic execution of a
region as a function of targetAccLoss, for FA, PR, and PF, respectively (under DPS in (a) and
DPS+ in (b)).

The pattern under DPS closely tracks our findings in Figure 1, as DPS considers each region in
isolation. This observation also holds for BS and HS, not shown as the corresponding figures
were barely readable due to very fine-grain temporal fluctuations. Recall that the x-axis captures
each dynamic region instance in the order of execution and, hence, represents a proxy for time.
Figure 3 shows how the number of omitted bits changes over time to track the temporal changes
in the noise tolerance of the applications (more noise-tolerant phases being able to accommodate
a higher number of omitted mantissa bits).

At this point, let us introduce a new baseline for comparison: SPS+. SPS+ works as follows.
During profiling, we use the DPS heuristic to find the number of bits to be omitted for each dy-
namic region instance. We then find the minimum, of the number of omitted bits, for each static
region over all of its dynamic instances. SPS+ imposes this minimum number of bits on all dy-
namic instances of the respective static region throughout execution.

We next examine the corresponding accuracy loss in the end result of the applications in Table 1
for DPS, DPS+, and SPS+. As expected, a higher targetAccLoss renders monotonically higher
accuracy loss for all applications. The accuracy loss under SPS+ is the minimum because it is the
most conservative policy. Dependency tracking introduced by DPS+ yields a more accurate re-
sult compared to DPS.

One drawback of DPS+ is that if the consecutively executed (dynamic) region instances are not
data-dependent, DPS+ may limit precision reduction unnecessarily. As a result, the end result

35July/August 2018 www.computer.org/micro

 APPROXIMATE COMPUTING

may become more accurate, leaving potential energy savings on the table. BS from Table 1 rep-
resents such an example, where each dynamic region instance processes independent inputs and
generates independent outputs. As Table 1 reveals, SPS+ renders a lower accuracy loss. How-
ever, as SPS+ cannot exploit temporal changes in algorithmic noise tolerance, it leaves potential
savings in energy untapped. For example, BS features a single static region (function), some dy-
namic instances of which cannot tolerate approximation (where #omittedBits becomes zero). In
this case, SPS+ imposes this #omittedBits as the minimum over all dynamic calls and, hence,
excludes any approximation. As a result, SPS+ cannot deliver any energy savings for BS as op-
posed to DPS+, as shown in Figure 4.

Figure 3. #omittedBits (Algorithm 1) under DPS+ for different values of targetAccLoss.

Figure 4(a) captures energy savings under DPS for targetAccLoss values between 0.05 and 0.2 at
increments of 0.05. Savings span 5.4 to 57.9 percent for targetAccLoss = 0.2. Notable energy
savings apply to BS, HS, and PR. Savings for FA and PF are modest. This is because the most
energy-hungry dynamic region (function) instances feature the lowest number of omitted man-
tissa bits (see Figure 3(c) and 3(d)).

DPS+ renders fewer (or at most equal) numbers of omitted bits when compared to DPS and,
hence, may leave potential energy savings untapped in trying to limit the accuracy loss. How-
ever, we find that the maximum difference between energy savings of DPS and DPS+ barely
reaches 3 percent. On average, the difference remains around 0.93 percent.

Figure 4(b) captures the energy profile under SPS+. Overall, SPS+ renders a higher energy con-
sumption than DPS+. BS is not the only application that loses the energy benefits of DPS under
SPS+. Energy consumption of PR also increases, by 10 percent when compared to DPS. Overall,
the increase in energy consumption varies between 0 and 40 percent across all applications.

Input Sensitivity
To quantify the input dependence due to profiling, we experiment with PR, which features a rich
set of inputs. Similar to other profiling-based approaches, DPS+ is input-dependent. However,
the degree of this dependence changes from application to application. At the same time, when
the properties (such as size and value distribution) of two input datasets are close to each other,
#omittedBits per dynamic region instance (or function call, if applicable), as identified by profil-
ing under one dataset, may result in reasonable output when applied to another dataset. Table 2

36July/August 2018 www.computer.org/micro

 IEEE MICRO

quantifies this effect for PR. This table is the equivalent of Table 1, except that only the gnu04
input dataset is used for profiling. In other words, #omittedBits as determined by a profiling pass
for gnu04 is imposed when running the same application with different input datasets (as tabu-
lated in the first column of Table 2). The number of vertices in gnuXX graphs vary between
8,846 and 22,687, and the number of edges vary between 31,839 and 54,705. For these inputs,
PR features a relatively weak input dependence. We experiment with one more graph: web-
Google (wg) from the same database. This graph has 875,713 vertices and 5.1 million edges. As
Table 2 captures, the discrepancy in this case becomes notable: 7x more accuracy loss under
DPS, when compared to the gnu04 dataset.

Table 1. Accuracy loss under DPS+ and SPS+ for different targetAccLoss values.

Policy App
targetAccLoss

0.05 0.1 0.15 0.2

DPS BS 0.0101 0.0194 0.0278 0.0362

FA 8.63E-05 0.0019 0.1053 0.1053

HS 4.54E-05 5.84E-05 7.13E-05 7.23E-05

PF 0.0003 0.0024 0.0025 0.0037

PR 0.0033 0.0102 0.0135 0.0222

DPS+ BS 0.0083 0.016 0.0228 0.0304

FA 4.69E-05 0.0001 0.1054 0.1054

HS 4.54E-05 5.84E-05 7.11E-05 7.23E-05

PF 0.0003 0.0003 0.0021 0.0209

PR 0.0033 0.0063 0.0077 0.014

SPS+ BS 0 0 0 0

FA 3.21E-08 3.21E-08 3.21E-08 1.62E-06

HS 4.54E-05 5.84E-05 5.84E-05 7.23E-05

PF 0.0009 0.0009 0.0009 0.0009

PR 0.0033 0.0033 0.0033 0.0079

Figure 4. Energy consumption under DPS+ and SPS+ for different targetAccLoss values.

37July/August 2018 www.computer.org/micro

 APPROXIMATE COMPUTING

Table 2. Input sensitivity analysis for PageRank (PR) with different datasets from the Snap
database. Only gnu04 is deployed for profiling.

Input Policy
targetAccLoss

0.05 0.1 0.15 0.2

gnu04 DPS 0.0033 0.0102 0.0135 0.0222

DPS+ 0.0033 0.0063 0.0077 0.014

SPS+ 0.0033 0.0033 0.0033 0.0079

gnu05 DPS 0.0034 0.0073 0.0101 0.0158

DPS+ 0.0033 0.005 0.0061 0.0108

SPS+ 0.0033 0.0033 0.0033 0.0074

gnu25 DPS 0.0026 0.0043 0.0056 0.0102

DPS+ 0.0026 0.0032 0.0035 0.0072

SPS+ 0.0026 0.0026 0.0026 0.0058

wg DPS 0.0121 0.137 0.1479 0.1695

DPS+ 0.0114 0.114 0.1226 0.1408

SPS+ 0.0097 0.0097 0.0097 0.0222

RELATED WORK
Adaptive precision reduction has been explored in the context of physics simulation to minimize
the area cost of floating-point units1 and for digital signal processing.7 We consider a broader
class of RMS applications. On the other hand, automated program analysis/tuning tools to help
developers optimize floating-point precision8-10 fit well into the offline profiling stage of DPS,
but the existing body of work in this domain usually does not explore adaptive tuning. Identifica-
tion of approximation targets at different granularities, as explored in Chisel11 or Approxilyzer,12
can be useful within the offline profiler or runtime monitor modules of a DPS system, as well.
For precision tuning, a practical DPS implementation can also benefit from an instruction set that
features explicit accuracy specification for each instruction’s outcome.3

ACKNOWLEDGMENTS
This work was supported in part by NSF grant no. CCF-1438286.

REFERENCES
1. T. Y. Yeh et al., “The Art of Deception: Adaptive Precision Reduction for Area

Efficient Physics Acceleration,” International Symposium on Microarchitecture, 2007.
2. A. Sampson et al., “EnerJ: Approximate Data Types for Safe and General Low-power

Computation,” Conference on Programming Language Design and Implementation
(PLDI), 2011.

3. S. Venkataramani et al., “Quality programmable vector processors for approximate
computing,” International Symposium on Microarchitecture (MICRO), 2013.

38July/August 2018 www.computer.org/micro

 IEEE MICRO

4. A. K. Mishra, R. Barik, and S. Paul, “iact: A software-hardware framework for
understanding the scope of approximate computing,” 2014;
https://sampa.cs.washington.edu/wacas14/papers/mishra.pdf.

5. Y. Shao and D. Brooks, “Energy Characterization and Instruction-Level Energy Model
of Intel’s Xeon Phi Processor,” International Symposium on Low Power Electronics
and Design (ISLPED), 2013.

6. J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power by optimizing the
necessary precision/range of floating-point arithmetic,” IEEE Transactions on Very
Large-Scale Integration Systems, vol. 8, no. 3, June 2000.

7. S. Lee and A. Gerstlauer, “Fine grain word length optimization for dynamic precision
scaling in dsp systems,” International Conference on Very Large-Scale Integration,
2013.

8. C. Rubio-Gonzalez et al., “Precimonious: Tuning assistant for floating-point
precision,” International Conference on High Performance Computing, Networking,
Storage and Analysis, 2013.

9. M. D. Linderman et al., “Towards Program Optimization Through Automated
Analysis of Numerical Precision,” International Symposium on Code Generation and
Optimization, 2010.

10. T. Moreau et al., “Exploiting quality-energy tradeoffs with arbitrary quantization,”
International Conference on Hardware/Software Codesign and System Synthesis,
2017.

11. S. Misailovic et al., “Chisel: Reliability- and accuracy-aware optimization of
approximate computational kernels,” SIGPLAN Not., vol. 49, no. 10, October 2014.

12. R. Venkatagiri et al., “Approxilyzer: Towards a systematic framework for instruction-
level approximate computing and its application to hardware resiliency,” International
Symposium on Microarchitecture, 2016.

ABOUT THE AUTHORS
Serif Yesil is a PhD student in the computer science department at the University of Illinois
at Urbana-Champaign. He has a master’s degree in computer engineering from Bilkent Uni-
versity. His research interests include computer architecture, heterogeneous architectures,
and parallel computing. Contact him at syesil2@illinois.edu.

Ismail Akturk is an assistant professor in the Electrical Engineering and Computer Science
Department at the University of Missouri-Columbia. He has a PhD from the Department of
Electrical and Computer Engineering at the University of Minnesota, Twin Cities. His main
research area is computer architecture, including energy efficiency, communication reduc-
tion in many-core systems, scalability, and soft computing. Contact him at
akturki@missouri.edu.

Ulya Karpuzcu is an associate professor in the Department of Electrical and Computer En-
gineering at the University of Minnesota, Twin Cities. She has a PhD in computer engineer-
ing from the University of Illinois at Urbana-Champaign. Her research interests span the
impact of technology on computing, energy-efficient computing, application domain spe-
cialized architectures, approximate computing, and computing at ultra-low voltages. Con-
tact her at ukarpuzc@umn.edu.

39July/August 2018 www.computer.org/micro

