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Motivation

* How to maximize power efficiency?
* Tailor the voltage to spatio-temporal changes in workload
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On-chip voltage regulation enables fast, fine-grain voltage control.

Power-limited computing platforms of today feature many on-chip regulators.

On-chip voltage regulators
 Convert power from an external energy source to the processor
* Power conversion loss is inevitable and sizable
* Lost power gets dissipated as heat
« Small regulator footprint = potential thermal hotspots

ThermoGater
Architectural governor to orchestrate thermally-aware on-chip regulation.
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Distributed On-Chip Voltage Regulation

* Many regulators dispersed across chip = maximize physical proximity to load
* Enables fast response time in tailoring operating point to load activity
 Mitigates voltage noise
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* Many regulators dispersed across chip = maximize physical proximity to load
* Enables fast response time in tailoring operating point to load activity
 Mitigates voltage noise

» Regulator Power conversion efficiency: T] = P, out / ])m
* Due to inevitable conversion loss, eta typically is less than 100%
 Lost power is dissipated as heat
* eta evolves as a function of microarchitectural activity in the load block
» Regulators are calibrated to reach peak eta at specific activity
 Deviation in activity from the calibrated point degrades eta
* Even the peak eta barely exceeds 9o%

How to sustain operation at peak eta”?
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(Temperature-oblivious) Regulator Gating

 Sustain operation at peak eta
By selective shut-down, i.e., gating of component regulators
* Asa function of changes in microarchitectural activity
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 Sustain operation at peak eta

By selective shut-down, i.e., gating of component regulators
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The Case for Temperature-Aware Regulator Gating

 Sustain operation at peak eta
By selective shut-down, i.e., gating of component regulators
* Asa function of changes in microarchitectural activity
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Gating Policy Design Space

Operate at peak eta? Minimize V-noise? Optimize Temperature?

ThermoGater

Current policies @
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The Case for ThermoGater

Voltage noise ~ 16.8%
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Experimental Setup

» IBM POWERS like 8-core processor

* 96 on-chip regulators, in 16 domains.

* Architectural simulator: SniperSim

« Power simulator: McPAT (MR2 version)
e Thermal simulator: HotSpot

* Voltage noise simulator: VoltSpot

* Benchmarks: Splash2X
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Which Regulators to Turn On?
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ThermoGater (TG) Policies

» Keep always as many active regulators as required at peak eta: N
 Track microarchitectural activity
 Turn more regulators on (off) under high (low) activity
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ThermoGater (TG) Policies

» Keep always as many active regulators as required at peak eta: N
 Track microarchitectural activity
 Turn more regulators on (off) under high (low) activity

» Fora given N, which regulators to select for turning on/oft?
 Constraint: prevent both hotspots and voltage emergencies
* Different ways to enforce this constraint leads to different TG policies
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Oracular ThemoGater (TG) Policy

« Assumption: oracular knowledge about
* QOutput power demand
» Temperature of all regulators under all possible gating decisions
 Potential voltage emergencies
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« Assumption: oracular knowledge about
* QOutput power demand
» Temperature of all regulators under all possible gating decisions
 Potential voltage emergencies

* Observations
* Voltage emergencies are short (~ ns).
» Thermal emergencies are long (~ ms).
* Voltage emergencies are rare

* Oracular TG Policy
* (I) Always mimics temperature-only
e (I) On a voltage emergency, switches all regulators on
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Oracular ThemoGater (TG) Policy
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Oracular ThemoGater (TG) Policy
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Oracular ThemoGater (TG) Policy
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respective best-case profiles by less than 0.1%
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Practical ThemoGater (TG) Policy

 Challenge: How to predict
* QOutput power demand
» Temperature of all regulators under all possible gating decisions
 Potential voltage emergencies
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Practical ThemoGater (TG) Policy

Challenge: How to predict
* QOutput power demand
» Temperature of all regulators under all possible gating decisions
 Potential voltage emergencies

Power demand prediction
 Keep a short history of power demand (at a few previous decision points)
 Take Weighted Moving Average (of power demand history)

Temperature prediction
* Read current temperature from on-chip sensors
* Use asimple linear model
* Rank anticipated temperatures at the next decision point

Voltage emergency detection
* Deploy a predictive per-core voltage emergency detector

. ThermoGater: Thermally-Aware On-Chip Voltage Regulation 16 ISCA'17 26/6/2017 m




Practical ThemoGater (TG) Policy
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Practical ThemoGater (TG) Policy
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Practical ThemoGater (TG) Policy
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Impact on Aging

+ Utilization per regulator is not uniform throughout execution

* Higher regulator utilization near cooler regions such as memory
* TG mimics temperature-only policy by default
* Periodic gating decision interval is based on temperature
 Gating based on voltage is event-driven

« Aging rate increases with both utilization and temperature
* Higher utilization near cooler regions likely to balance out aging
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Conclusion

e ThermoGater

* An architectural governor for practical, thermally-aware regulator gating
* Sustains operation at peak power conversion efficiency

» Mitigates regulator-induced thermal emergencies

* Considers the impact on voltage noise
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Conclusion

e ThermoGater

* An architectural governor for practical, thermally-aware regulator gating
* Sustains operation at peak power conversion efficiency

» Mitigates regulator-induced thermal emergencies

* Considers the impact on voltage noise

* Practical ThermoGater policies can

* Sustain operation at 1% of the peak power conversion efficiency
* Keep the temperature only 0.6°C higher than the best-case thermal profile
» Keep the voltage noise only 0.2% higher than the best-case voltage profile
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Thanks!

For questions or feedback, please contact

khatami@umn.edu

ukarpuzc@umn.edu
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